

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # Changelog

All notable changes to this project will be documented in this file.

The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

[1.2.5] - 2020-04-27

	Add .j2 suffix to python template names to avoid confusing certain build tools [#72](https://github.com/danielgtaylor/python-betterproto/pull/72)

[1.2.4] - 2020-04-26

	Enforce utf-8 for reading the readme in setup.py [#67](https://github.com/danielgtaylor/python-betterproto/pull/67)

	Only import types from grpclib when type checking [#52](https://github.com/danielgtaylor/python-betterproto/pull/52)

	Improve performance of serialize/deserialize by caching type information of fields in class [#46](https://github.com/danielgtaylor/python-betterproto/pull/46)

	Support using Google’s wrapper types as RPC output values [#40](https://github.com/danielgtaylor/python-betterproto/pull/40)

	Fixes issue where protoc did not recognize plugin.py as win32 application [#38](https://github.com/danielgtaylor/python-betterproto/pull/38)

	Fix services using non-pythonified field names [#34](https://github.com/danielgtaylor/python-betterproto/pull/34)

	Add ability to provide metadata, timeout & deadline args to requests [#32](https://github.com/danielgtaylor/python-betterproto/pull/32)

[1.2.3] - 2020-04-15

	Exclude empty lists from to_dict by default [#16](https://github.com/danielgtaylor/python-betterproto/pull/16)

	Add include_default_values parameter for to_dict [#12](https://github.com/danielgtaylor/python-betterproto/pull/12)

	Fix class names being prepended with duplicates when using protocol buffers that are nested more than once [#21](https://github.com/danielgtaylor/python-betterproto/pull/21)

	Add support for python 3.6 [#30](https://github.com/danielgtaylor/python-betterproto/pull/30)

[1.2.2] - 2020-01-09

	Mention lack of Proto 2 support in README.

	Fix serialization of constructor parameters [#10](https://github.com/danielgtaylor/python-betterproto/pull/10)

	Fix casing parameter propagation [#7](https://github.com/danielgtaylor/python-betterproto/pull/7)

[1.2.1] - 2019-10-29

	Fix comment indentation bug in rendered gRPC methods.

[1.2.0] - 2019-10-28

	Generated code output auto-formatting via [Black](https://github.com/psf/black)

	Simplified gRPC helper functions

[1.1.0] - 2019-10-27

	Better JSON casing support

	Handle field names which clash with Python reserved words

	Better handling of default values from type introspection

	Support for Google Duration & Timestamp types

	Support for Google wrapper types

	Documentation updates

[1.0.1] - 2019-10-22

	README to the PyPI details page

[1.0.0] - 2019-10-22

	Initial release

[1.2.5]: https://github.com/danielgtaylor/python-betterproto/compare/v1.2.4…v1.2.5 [https://github.com/danielgtaylor/python-betterproto/compare/v1.2.4...v1.2.5]
[1.2.4]: https://github.com/danielgtaylor/python-betterproto/compare/v1.2.3…v1.2.4 [https://github.com/danielgtaylor/python-betterproto/compare/v1.2.3...v1.2.4]
[1.2.3]: https://github.com/danielgtaylor/python-betterproto/compare/v1.2.2…v1.2.3 [https://github.com/danielgtaylor/python-betterproto/compare/v1.2.2...v1.2.3]
[1.2.2]: https://github.com/danielgtaylor/python-betterproto/compare/v1.2.1…v1.2.2 [https://github.com/danielgtaylor/python-betterproto/compare/v1.2.1...v1.2.2]
[1.2.1]: https://github.com/danielgtaylor/python-betterproto/compare/v1.2.0…v1.2.1 [https://github.com/danielgtaylor/python-betterproto/compare/v1.2.0...v1.2.1]
[1.2.0]: https://github.com/danielgtaylor/python-betterproto/compare/v1.1.0…v1.2.0 [https://github.com/danielgtaylor/python-betterproto/compare/v1.1.0...v1.2.0]
[1.1.0]: https://github.com/danielgtaylor/python-betterproto/compare/v1.0.1…v1.1.0 [https://github.com/danielgtaylor/python-betterproto/compare/v1.0.1...v1.1.0]
[1.0.1]: https://github.com/danielgtaylor/python-betterproto/compare/v1.0.0…v1.0.1 [https://github.com/danielgtaylor/python-betterproto/compare/v1.0.0...v1.0.1]
[1.0.0]: https://github.com/danielgtaylor/python-betterproto/releases/tag/v1.0.0

 # Better Protobuf / gRPC Support for Python

This project aims to provide an improved experience when using Protobuf / gRPC in a modern Python environment by making use of modern language features and generating readable, understandable, idiomatic Python code. It will not support legacy features or environments (e.g. Protobuf 2). The following are supported:

	Protobuf 3 & gRPC code generation
- Both binary & JSON serialization is built-in

	Python 3.6+ making use of:
- Enums
- Dataclasses
- async/await
- Timezone-aware datetime and timedelta objects
- Relative imports
- Mypy type checking

This project is heavily inspired by, and borrows functionality from:

	https://github.com/protocolbuffers/protobuf/tree/master/python

	https://github.com/eigenein/protobuf/

	https://github.com/vmagamedov/grpclib

Motivation

This project exists because I am unhappy with the state of the official Google protoc plugin for Python.

	No async support (requires additional grpclib plugin)

	No typing support or code completion/intelligence (requires additional mypy plugin)

	No __init__.py module files get generated

	Output is not importable
- Import paths break in Python 3 unless you mess with sys.path

	Bugs when names clash (e.g. codecs package)

	Generated code is not idiomatic
- Completely unreadable runtime code-generation
- Much code looks like C++ or Java ported 1:1 to Python
- Capitalized function names like HasField() and SerializeToString()
- Uses SerializeToString() rather than the built-in __bytes__()
- Special wrapped types don’t use Python’s None
- Timestamp/duration types don’t use Python’s built-in datetime module

This project is a reimplementation from the ground up focused on idiomatic modern Python to help fix some of the above. While it may not be a 1:1 drop-in replacement due to changed method names and call patterns, the wire format is identical.

Installation & Getting Started

First, install the package. Note that the [compiler] feature flag tells it to install extra dependencies only needed by the protoc plugin:

```sh
# Install both the library and compiler
$ pip install “betterproto[compiler]”

# Install just the library (to use the generated code output)
$ pip install betterproto
```

Now, given you installed the compiler and have a proto file, e.g example.proto:

```protobuf
syntax = “proto3”;

package hello;

// Greeting represents a message you can tell a user.
message Greeting {


string message = 1;





}

You can run the following:

`sh
$ protoc -I . --python_betterproto_out=. example.proto
`

This will generate hello.py which looks like:

```py
Generated by the protocol buffer compiler. DO NOT EDIT!
sources: hello.proto
plugin: python-betterproto
from dataclasses import dataclass

import betterproto

@dataclass
class Hello(betterproto.Message):

“””Greeting represents a message you can tell a user.”””

message: str = betterproto.string_field(1)


```

Now you can use it!

```py
>>> from hello import Hello
>>> test = Hello()
>>> test
Hello(message=’’)

>>> test.message = "Hey!"
>>> test
Hello(message="Hey!")

>>> serialized = bytes(test)
>>> serialized
b'\n\x04Hey!'

>>> another = Hello().parse(serialized)
>>> another
Hello(message="Hey!")

>>> another.to_dict()
{"message": "Hey!"}
>>> another.to_json(indent=2)
'{\n "message": "Hey!"\n}'
```





### Async gRPC Support

The generated Protobuf Message classes are compatible with [grpclib](https://github.com/vmagamedov/grpclib) so you are free to use it if you like. That said, this project also includes support for async gRPC stub generation with better static type checking and code completion support. It is enabled by default.

Given an example like:

```protobuf
syntax = “proto3”;

package echo;

	message EchoRequest {
	string value = 1;
// Number of extra times to echo
uint32 extra_times = 2;

}

	message EchoResponse {
	repeated string values = 1;

}

	message EchoStreamResponse {
	string value = 1;

}

	service Echo {
	rpc Echo(EchoRequest) returns (EchoResponse);
rpc EchoStream(EchoRequest) returns (stream EchoStreamResponse);

}

You can use it like so (enable async in the interactive shell first):

```py
>>> import echo
>>> from grpclib.client import Channel

>>> channel = Channel(host="127.0.0.1", port=1234)
>>> service = echo.EchoStub(channel)
>>> await service.echo(value="hello", extra_times=1)
EchoResponse(values=["hello", "hello"])





>>> async for response in service.echo_stream(value="hello", extra_times=1)
        print(response)





EchoStreamResponse(value=”hello”)
EchoStreamResponse(value=”hello”)
```

JSON

Both serializing and parsing are supported to/from JSON and Python dictionaries using the following methods:

	Dicts: Message().to_dict(), Message().from_dict(…)

	JSON: Message().to_json(), Message().from_json(…)

For compatibility the default is to convert field names to camelCase. You can control this behavior by passing a casing value, e.g:

`py
>>> MyMessage().to_dict(casing=betterproto.Casing.SNAKE)
`

Determining if a message was sent

Sometimes it is useful to be able to determine whether a message has been sent on the wire. This is how the Google wrapper types work to let you know whether a value is unset, set as the default (zero value), or set as something else, for example.

Use betterproto.serialized_on_wire(message) to determine if it was sent. This is a little bit different from the official Google generated Python code, and it lives outside the generated Message class to prevent name clashes. Note that it only supports Proto 3 and thus can only be used to check if Message fields are set. You cannot check if a scalar was sent on the wire.

```py
# Old way (official Google Protobuf package)
>>> mymessage.HasField(‘myfield’)

# New way (this project)
>>> betterproto.serialized_on_wire(mymessage.myfield)
```

One-of Support

Protobuf supports grouping fields in a oneof clause. Only one of the fields in the group may be set at a given time. For example, given the proto:

```protobuf
syntax = “proto3”;


	message Test {
	
	oneof foo {
	bool on = 1;
int32 count = 2;
string name = 3;





}







}

You can use betterproto.which_one_of(message, group_name) to determine which of the fields was set. It returns a tuple of the field name and value, or a blank string and None if unset.

```py
>>> test = Test()
>>> betterproto.which_one_of(test, “foo”)
[“”, None]

>>> test.on = True
>>> betterproto.which_one_of(test, "foo")
["on", True]

Setting one member of the group resets the others.
>>> test.count = 57
>>> betterproto.which_one_of(test, “foo”)
[“count”, 57]
>>> test.on
False

Default (zero) values also work.
>>> test.name = “”
>>> betterproto.which_one_of(test, “foo”)
[“name”, “”]
>>> test.count
0
>>> test.on
False
```

Again this is a little different than the official Google code generator:

```py
Old way (official Google protobuf package)
>>> message.WhichOneof(“group”)
“foo”

New way (this project)
>>> betterproto.which_one_of(message, “group”)
[“foo”, “foo’s value”]
```

### Well-Known Google Types

Google provides several well-known message types like a timestamp, duration, and several wrappers used to provide optional zero value support. Each of these has a special JSON representation and is handled a little differently from normal messages. The Python mapping for these is as follows:


Google Message              | Python Type                              | Default                |

————————— | —————————————- | ———————- |

google.protobuf.duration  | [datetime.timedelta][td]               | 0                    |

google.protobuf.timestamp | Timezone-aware [datetime.datetime][dt] | 1970-01-01T00:00:00Z |

google.protobuf.*Value    | Optional[…]                          | None                 |



[td]: https://docs.python.org/3/library/datetime.html#timedelta-objects
[dt]: https://docs.python.org/3/library/datetime.html#datetime.datetime

For the wrapper types, the Python type corresponds to the wrapped type, e.g. google.protobuf.BoolValue becomes Optional[bool] while google.protobuf.Int32Value becomes Optional[int]. All of the optional values default to None, so don’t forget to check for that possible state. Given:

```protobuf
syntax = “proto3”;

import “google/protobuf/duration.proto”;
import “google/protobuf/timestamp.proto”;
import “google/protobuf/wrappers.proto”;

	message Test {
	google.protobuf.BoolValue maybe = 1;
google.protobuf.Timestamp ts = 2;
google.protobuf.Duration duration = 3;

}

You can do stuff like:

```py
>>> t = Test().from_dict({“maybe”: True, “ts”: “2019-01-01T12:00:00Z”, “duration”: “1.200s”})
>>> t
Test(maybe=True, ts=datetime.datetime(2019, 1, 1, 12, 0, tzinfo=datetime.timezone.utc), duration=datetime.timedelta(seconds=1, microseconds=200000))

>>> t.ts - t.duration
datetime.datetime(2019, 1, 1, 11, 59, 58, 800000, tzinfo=datetime.timezone.utc)





>>> t.ts.isoformat()
'2019-01-01T12:00:00+00:00'





>>> t.maybe = None
>>> t.to_dict()
{'ts': '2019-01-01T12:00:00Z', 'duration': '1.200s'}
```


Development

First, make sure you have Python 3.6+ and pipenv installed, along with the official [Protobuf Compiler](https://github.com/protocolbuffers/protobuf/releases) for your platform. Then:

```sh
# Get set up with the virtual env & dependencies
$ pipenv install –dev

# Link the local package
$ pipenv shell
$ pip install -e .
```

Code style

This project enforces [black](https://github.com/psf/black) python code formatting.

Before commiting changes run:

`bash
pipenv run black .
`

To avoid merge conflicts later, non-black formatted python code will fail in CI.

Tests

There are two types of tests:

	Standard tests

	Custom tests

Standard tests

Adding a standard test case is easy.

	Create a new directory betterproto/tests/inputs/<name>
- add <name>.proto with a message called Test
- add <name>.json with some test data

It will be picked up automatically when you run the tests.

	See also: [Standard Tests Development Guide](betterproto/tests/README.md)

Custom tests

Custom tests are found in tests/test_*.py and are run with pytest.

Running

Here’s how to run the tests.

```sh
# Generate assets from sample .proto files
$ pipenv run generate

# Run all tests
$ pipenv run test
```

TODO

	[x] Fixed length fields
- [x] Packed fixed-length

	[x] Zig-zag signed fields (sint32, sint64)

	[x] Don’t encode zero values for nested types

	[x] Enums

	[x] Repeated message fields

	[x] Maps
- [x] Maps of message fields

	[x] Support passthrough of unknown fields

	[x] Refs to nested types

	[x] Imports in proto files

	[x] Well-known Google types
- [] Support as request input
- [] Support as response output

	[] Automatically wrap/unwrap responses

	[x] OneOf support
- [x] Basic support on the wire
- [x] Check which was set from the group
- [x] Setting one unsets the others

	[] JSON that isn’t completely naive.
- [x] 64-bit ints as strings
- [x] Maps
- [x] Lists
- [x] Bytes as base64
- [] Any support
- [x] Enum strings
- [x] Well known types support (timestamp, duration, wrappers)
- [x] Support different casing (orig vs. camel vs. others?)

	[] Async service stubs
- [x] Unary-unary
- [x] Server streaming response
- [] Client streaming request

	[x] Renaming messages and fields to conform to Python name standards

	[x] Renaming clashes with language keywords

	[x] Python package

	[x] Automate running tests

	[] Cleanup!

License

Copyright © 2019 Daniel G. Taylor

http://dgt.mit-license.org/

 # Standard Tests Development Guide

Standard test cases are found in [betterproto/tests/inputs](inputs), where each subdirectory represents a testcase, that is verified in isolation.

```
inputs/


bool/
double/
int32/
…




```

Test case directory structure

Each testcase has a <name>.proto file with a message called Test, a matching .json file and optionally a custom test file called test_*.py.

```bash
bool/


bool.proto
bool.json
test_bool.py  # optional




```

proto

<name>.proto — The protobuf message to test

```protobuf
syntax = “proto3”;


	message Test {
	bool value = 1;






}

You can add multiple .proto files to the test case, as long as one file matches the directory name.

### json

<name>.json &mdash; Test-data to validate the message with

```json
{

“value”: true

}

pytest

test_<name>.py — Custom test to validate specific aspects of the generated class

```python
from betterproto.tests.output_betterproto.bool.bool import Test


	def test_value():
	message = Test()
assert not message.value, “Boolean is False by default”





```

Standard tests

The following tests are automatically executed for all cases:

	[x] Can the generated python code imported?

	[x] Can the generated message class be instantiated?

	[x] Is the generated code compatible with the Google’s grpc_tools.protoc implementation?

Running the tests

	pipenv run generate
This generates
- betterproto/tests/output_betterproto — the plugin generated python classes
- betterproto/tests/output_reference — reference implementation classes

	pipenv run test

Intentionally Failing tests

The standard test suite includes tests that fail by intention. These tests document known bugs and missing features that are intended to be corrented in the future.

When running pytest, they show up as x or X in the test results.

`
betterproto/tests/test_inputs.py ..x...x..x...x.X........xx........x.....x.......x.xx....x...................... [84%]
`

	. — PASSED

	x — XFAIL: expected failure

	X — XPASS: expected failure, but still passed

Test cases marked for expected failure are declared in [inputs/xfail.py](inputs.xfail.py)

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/minus.png

_static/plus.png

_static/file.png

